Zero assignment of matrix pencils by additive structured transformations
نویسندگان
چکیده
منابع مشابه
Zero Assignment Problem in RLC Networks
The paper deals with the problem of zero assignment in RLC networks by selection of appropriate values for the nondynamical elements, the resistors. For a certain family of network redesign problems by the additive perturbations may be described as diagonal perturbations and such modifications are considered here. This problem belongs to the family of DAP problems (Determinantal Assignment Prob...
متن کاملCanonical forms for doubly structured matrices and pencils
In this paper we derive canonical forms under structure preserving equivalence transformations for matrices and matrix pencils that have a multiple structure, which is either an H-selfadjoint or H-skew-adjoint structure, where the matrix H is a complex nonsingular Hermitian or skew-Hermitian matrix. Matrices and pencils of such multiple structures arise for example in quantum chemistry in Hartr...
متن کاملCondensed Forms for Skew-Hamiltonian/Hamiltonian Pencils
Abstract In this paper we consider real or complex skew-Hamiltonian/Hamiltonian pencils λS −H, i.e., pencils where S is a skew-Hamiltonian and H is a Hamiltonian matrix. These pencils occur for example in the theory of continuous time, linear quadratic optimal control problems. We reduce these pencils to canonical and Schur-type forms under structure-preserving transformations, i.e., J-congruen...
متن کاملStructured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملNumerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils
We discuss the numerical solution of structured generalized eigenvalue problems that arise from linear-quadratic optimal control problems, H∞ optimization, multibody systems, and many other areas of applied mathematics, physics, and chemistry. The classical approach for these problems requires computing invariant and deflating subspaces of matrices and matrix pencils with Hamiltonian and/or ske...
متن کامل